Exonuclease hDIS3L2 specifies an exosome-independent 3'-5' degradation pathway of human cytoplasmic mRNA.
نویسندگان
چکیده
Turnover of mRNA in the cytoplasm of human cells is thought to be redundantly conducted by the monomeric 5'-3' exoribonuclease hXRN1 and the 3'-5' exoribonucleolytic RNA exosome complex. However, in addition to the exosome-associated 3'-5' exonucleases hDIS3 and hDIS3L, the human genome encodes another RNase II/R domain protein-hDIS3L2. Here, we show that hDIS3L2 is an exosome-independent cytoplasmic mRNA 3'-5' exonuclease, which exhibits processive activity on structured RNA substrates in vitro. hDIS3L2 associates with hXRN1 in an RNA-dependent manner and can, like hXRN1, be found on polysomes. The impact of hDIS3L2 on cytoplasmic RNA metabolism is revealed by an increase in levels of cytoplasmic RNA processing bodies (P-bodies) upon hDIS3L2 depletion, which also increases half-lives of investigated mRNAs. Consistently, RNA sequencing (RNA-seq) analyses demonstrate that depletion of hDIS3L2, like downregulation of hXRN1 and hDIS3L, causes changed levels of multiple mRNAs. We suggest that hDIS3L2 is a key exosome-independent effector of cytoplasmic mRNA metabolism.
منابع مشابه
The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway.
The final step of cytoplasmic mRNA degradation proceeds in either a 5'-3' direction catalysed by Xrn1 or in a 3'-5' direction catalysed by the exosome. Dis3/Rrp44, an RNase II family protein, is the catalytic subunit of the exosome. In humans, there are three paralogues of this enzyme: DIS3, DIS3L, and DIS3L2. In this work, we identified a novel Schizosaccharomyces pombe exonuclease belonging t...
متن کاملARE-mRNA degradation requires the 5'-3' decay pathway.
As an important mode of suppressing gene expression, messenger RNAs containing an AU-rich element (ARE) in the 3' untranslated region are rapidly degraded in the cytoplasm. ARE-mediated mRNA decay (AMD) is initiated by deadenylation, and in vitro studies have indicated that subsequent degradation occurs in the 3'-5' direction through a complex of exonucleases termed the exosome. An alternative ...
متن کاملIdentification of a Regulated Pathway for Nuclear Pre-mRNA Turnover
We have identified a nuclear pathway that rapidly degrades unspliced pre-mRNAs in yeast. This involves 3'-->5' degradation by the exosome complex and 5'-->3' degradation by the exonuclease Rat1p. 3'-->5' degradation is normally the major pathway and is regulated in response to carbon source. Inhibition of pre-mRNA degradation resulted in increased levels of pre-mRNAs and spliced mRNAs. When spl...
متن کاملYeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs.
The exosome is a protein complex consisting of a variety of 3'-to-5' exonucleases that functions both in 3'-to-5' trimming of rRNA precursors and in 3'-to-5' degradation of mRNA. To determine additional exosome functions, we examined the processing of a variety of RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), RNase P, RNase MRP, and SRP RNAs, and 5S rRNAs i...
متن کاملThe mRNA encoding the yeast ARE-binding protein Cth2 is generated by a novel 3′ processing pathway
Microarray analyses of mRNAs over-expressed in strains lacking the nuclear exosome component Rrp6 identified the transcript encoding the ARE-binding protein Cth2, which functions in cytoplasmic mRNA stability. Subsequent northern analyses revealed that exosome mutants accumulate a 3'-extended transcript at the expense of the mature CTH2 mRNA. The 3' ends of the CTH2 mRNA were mapped to a [GU(3-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 32 13 شماره
صفحات -
تاریخ انتشار 2013